
Quantifying the Impact of Edge Computing on
Mobile Applications

Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, Brandon Amos, Zhuo Chen,
Padmanabhan Pillai†, Mahadev Satyanarayanan

Carnegie Mellon University and †Intel Labs

ABSTRACT
Computational offloading services at the edge of the Inter-
net for mobile devices are becoming a reality. Using a wide
range of mobile applications, we explore how such infras-
tructure improves latency and energy consumption relative
to the cloud. We present experimental results from WiFi and
4G LTE networks that confirm substantial wins from edge
computing for highly interactive mobile applications.

1. Introduction
Edge computing is a new paradigm in which substantial

compute and storage resources are placed at the edge of
the Internet, in close proximity to mobile devices or sen-
sors. Terms such as “cloudlets” (the term we use in this
paper) [22], “micro data centers (MDCs)” [12], “fog” [1],
and “mobile edge computing (MEC)” [4] are used to refer to
these small, edge-located computing nodes. Edge comput-
ing is motivated by its potential to improve scalability, la-
tency, and bandwidth over a cloud-only model. More prac-
tically, some efforts stem from the drive towards software-
defined networking (SDN) and network function virtualiza-
tion (NFV), and the fact that the same hardware can provide
SDN, NFV, and edge computing services. This suggests that
infrastructure providing edge computing services may soon
become ubiquitous, and may be deployed at greater densities
than content delivery network (CDN) nodes today. However,
despite the momentum in this space, it is unclear how much
such systems actually benefit end users. Our goal in this pa-
per is to provide quantitative answers to this question.

We focus on a specific benefit of edge computing, namely
the ability to offload computation at low latency from a mo-
bile device to a cloudlet. This capability was first demon-

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).

APSys’16, August 04-05, 2016, Hong Kong, China.
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4265-0/16/08.

DOI: http://dx.doi.org/10.1145/2967360.2967369

strated in 1997 by Noble et al. [19], who used it to imple-
ment speech recognition with acceptable performance on a
resource-limited mobile device. In 1999, Flinn et al. [8] ex-
tended this approach to improve battery life. These concepts
were generalized in a 2001 paper that introduced the term
cyber foraging for the amplification of a mobile device’s
data or compute capabilities by leveraging nearby infrastruc-
ture [20]. Today, offloading to the cloud is mainstream. It is
used for speech recognition on both iOS and Android de-
vices. For future applications that are both compute- and
latency-sensitive, such as cognitive assistance [5] or mo-
bile augmented reality, offloading to cloudlets at the network
edge may be the new norm.

In this paper, we ask “How much better is it to offload to a
cloudlet rather than to the cloud?” We focus on metrics that
are important to end users, namely response time and energy
consumption. On a variety of applications, some preparti-
tioned by a developer and others dynamically partitioned by
a runtime system, we quantify how cloudlets impact these
metrics relative to cloud offload. We explore how offload-
ing over WiFi and 4G LTE differ in these metrics. We also
report on the sensitivity of these metrics to the interactivity
level of an application.

2. Experimental Approach
Studying mobile offload to cloud and cloudlets is compli-

cated by two factors. First, most existing applications have
been tuned to run well in the mobile or mobile-plus-cloud
environment. They have been designed around the resource
limits of the mobile device and relatively high latency to
the cloud. Hence, there are no production-quality applica-
tions that are too processing intensive to run on a mobile de-
vice but too latency sensitive for the cloud. Since this com-
bination of application characteristics is exactly the sweet
spot for edge computing, we have scoured the literature and
have identified research applications with these characteris-
tics (Section 2.1). These are statically prepartitioned into
cloud and mobile device components.

Secondly, the benefits of offloading depend heavily on
the quality of the partitioning of the applications. Static
prepartitioning may not be optimal. When resources such
as wireless network bandwidth vary, dynamic partitioning



Application Request size (avg) Response size (avg)
FACE 62 KB < 60 bytes
MAR 26 KB < 20 bytes

FLUID 16 bytes 25 KB

Figure 1: Network load of prepartitioned apps

may be necessary. As an unbiased external factor in our
results, we use an existing tool called COMET [11] that
represents the state of the art in dynamically partitioning
off-the-shelf Android applications. It can transparently mi-
grate threads from a mobile device to a remote server and
back, guided by its dynamic partitioning algorithm. For the
same reasons as for the prepartitioned applications, there are
no compute-intensive latency-sensitive applications avail-
able off the shelf. So we use compute-intensive benchmarks,
with a preference for the ones used in the original COMET
paper, to represent this kind of application.

By exploring a diversity of data points, we increase the
likelihood of our insights being robust and significant. With
emphasis on response time as the key indicator of perfor-
mance, we address the following issues relative to the choice
of offloading site:

• effect on prepartitioned applications.

• effect on COMET-partitioned applications.

• interplay with an application’s interactivity level.

• interplay with the type of wireless network.

• effect on the energy usage of a mobile device.

2.1 Applications
We study three statically prepartitioned applications from

the existing research literature:
• FACE is a face recognition application that first detects

faces in an image, and then attempts to identify the
face from a small, pre-populated database. It imple-
ments the Eigenfaces method [25] using OpenCV [3],
and runs on Microsoft Windows.

• MAR is an augmented reality application that labels
buildings and landmarks in a scene [24]. The proto-
type application uses a dataset of 1005 labeled images
of 200 buildings. MAR runs on Microsoft Windows,
and makes significant use of OpenCV [3], Intel Inte-
grated Performance Primitives (IPP) [15], and multiple
processing threads.

• FLUID is an example of physics-based computer
graphics [23]. The Linux application runs a multi-
threaded physics simulation of an imaginary fluid and
uses client accelerometer readings to let users interact
with the model. We run FLUID on a 2218-particle sys-
tem with 20 ms timesteps, generating up to 50 frames
per second.

Each of these applications is split into a front-end mobile
app and a back-end server that performs most of the compu-
tations. The mobile front-end captures and sends inputs (im-
ages for FACE and MAR, accelerometer values for FLUID),
and shows the outputs (displaying text labels for FACE and

Application Total Transfer Size # of Transfers †
Linpack ≈ 10 MB 1

CPU Benchmark ≈ 80 KB 1
PI Benchmark ≈ 10 MB 15

† Number of thread migrations for each run

Figure 2: Network load of COMET apps

MAR, and rendering a set of particles for FLUID). The differ-
ences in the inputs and outputs are reflected in the network
transfer sizes for these applications, shown in Figure 1.

We also investigate three unmodified Android apps using
COMET.One of them is from the original COMET paper, and
the other two are from the Google Play store:

• Linpack for Android [6] performs numerical linear
algebra computations to solve a dense N-by-N system
of linear equations. This benchmark is used in the orig-
inal COMET paper [11].

• CPU Benchmark [26] is a simple benchmarking tool
designed for testing and comparing phone processing
speeds and effects of CPU overclocking.

• PI Benchmark [17] measures CPU and memory
speed by calculating π with up to 2 million digits of
precision. It periodically saves intermediate state to a
file, possibly triggering thread migration by COMET.

All of these applications are compute-intensive, and
should benefit greatly from offloading. However, as shown
in Figure 2, they differ in the amount and frequency of data
transfers when run with COMET.

2.2 Experimental Setup
Figures 3 and 4 characterize the cloudlet, cloud, and mo-

bile devices we use for the experiments. In the cloud (Ama-
zon EC2), we use the most powerful virtual machine (VM)
instance available to us in terms of CPU clock speed. The in-
stance has 8 cores (VCPUs), each with the fastest available
clock rate (2.8 GHz); its memory size is more than enough
for all of the tested applications (15 GB). For cloudlet off-
load, we use a VM running on a Dell Optiplex 9010 desktop
machine with 4 cores (VCPUs), whose clock is limited to
2.7 GHz. The VM instance is allocated 4 GB of RAM. By
comparing a relatively weak cloudlet against more powerful
EC2 cloud instances, we have deliberately stacked the deck
against cloudlets. Hence, any cloudlet wins in our experi-
ments should be considered quite meaningful.

We use two different mobile devices in our experiments.
Since COMET does not run on Android versions beyond
4.1.X, those experiments use a Samsung Galaxy Nexus
phone that runs Android 4.1.1. For the prepartitioned ap-
plications, our choice of hardware is limited by the fact that
some of our applications only run on x86 hardware. Hence,
all experiments with prepartitioned applications use a Dell
Latitude 2120 netbook whose computational power is com-
parable to the latest smartphones.

Li et al. [16] report that average round trip time (RTT)
from 260 global vantage points to their optimal Amazon
EC2 instances is 74 ms, which is similar to the RTTs for
EC2-West in our experimental setting. We note that our



Cloudlet Cloud (Amazon AWS)
VM on Dell Optiplex 9010 c3.2xlarge instance

Intel R© Core R© i7-3770 Intel R© Xeon E5-2680 v2
2.7 GHz†, 4 VCPUs 2.8 GHz, 8 VCPUs

4 GB RAM 15 GB RAM
8 GB Virtual disk 160 GB SSD
1 Gbps Ethernet Amazon Enhanced Network

†We limit the CPU to 2.7 GHz and disable Turbo boost.

Figure 3: VM and HW specs at offloading sites

Smartphone Netbook
(Samsung Galaxy Nexus) (Dell Latitude 2120)

ARM R© Cortex-A9 Intel R© AtomTM N550
1.2 GHz, 2 cores 1.5 GHz, 2 cores

1 GB RAM 2 GB RAM
32 GB Flash 250 GB HDD

802.11a/b/g/n WiFi 802.11a/g/n WiFi

Figure 4: HW configuration of mobile devices

connection to EC2-East is much faster (8 ms) and is atyp-
ical. Because our organization is a major Amazon AWS
customer, we have preferential routing in the Internet back-
bone to EC2-East. Such routing would not be available to a
mobile device in the field. Thus, in interpreting our results
EC2-East should be considered the best possible case, while
EC2-West should be regarded as typical. Unless qualified,
the term “cloud” refers to EC2-West in the rest of this paper.

Figure 5 illustrates the networking used in our experi-
ments. There are five configurations, described below.

No Offload: The server component runs locally on the
mobile device, thereby avoiding all network transmission.

Cloud-WiFi: The mobile device uses 802.11n to con-
nect to a private WiFi access point that is connected to an
enterprise network via Ethernet, and thence via the Internet
to an Amazon AWS site.

Cloudlet-WiFi: This is similar to the Cloud-WiFi con-
figuration, except that network traffic only needs to go as far
as to the cloudlet, which is on the same Ethernet segment as
the WiFi access point.

Cloudlet-LTE: Under a license for experimental use
from the FCC, we have set up an in-lab 4G LTE network.
This in-lab cellular network uses a Nokia eNodeB whose
transmission strength is attenuated to 10 mW. Network traf-
fic via the eNodeB is directed through a Nokia RACS gate-
way and local Ethernet segment to the cloudlet.

Cloud-LTE: Due to limitations in the network setup be-
tween our in-lab cellular network and the Internet, our lab
cell cannot achieve the typical performance for the Cloud-
LTE option. So we use cellular data service on the com-
mercial T-Mobile 4G LTE network to reach the Internet, and
thence an Amazon AWS site.

Because of the experimental frequency bands used in our
in-lab LTE network, only a few phones such as the Google
Nexus 6 can connect to it. Unfortunately, COMET cannot run
on this phone. So for the cloudlet-LTE experiments, we use
USB and WiFi tethering on Google Nexus 6 to connect the
netbook and COMET-capable smartphone respectively. For

Figure 5: Network setup for the experiments

Figure 6: CDF of pinging RTTs

consistency, we use tethering with Cloud-LTE as well.
Figure 6 shows the RTTs of all the above network configu-

rations except No Offload, using the Linux ping command
with 1 ms pinging interval. The ping RTTs represent the
minimum baseline latencies possible for our network con-
figurations.

3. Experimental Results

3.1 WiFi Offloading Performance
Figure 7 compares response times when offloading

prepartitioned applications to Amazon AWS sites, or to a
cloudlet. Also shown is the application response time with-
out offload. The graphs plot cumulative distribution func-
tions (CDFs) of response times measured over three runs.

Response times clearly degrade with increasing latency to
the offload site. For all three applications, the CDF curves
shift right due to higher network latency and lower effective
bandwidth to the farther offload sites. The CDFs for more
remote sites also rise less sharply, indicating greater vari-
ability of response times, due to greater uncertainty of WAN
network conditions. (These effects are somewhat masked
by the large inherent variation in performance for the FACE
application.) As a result, No Offload often provides faster re-
sponse times than offloading to distant clouds. The cloudlet
consistently provides the best response times.



(a) FACE (300 images per run)

(b) MAR (100 images per run)

(c) FLUID (10 min runs)

Figure 7: Response times for prepartitioned apps (WiFi)

Figure 8 presents the results for COMET-based applica-
tions. These, too, show that response time is affected by
offload location. EC2-West, EC2-Europe, and EC2-Asia
are clearly worse than EC2-East. For PI Benchmark,
EC2-Asia is too far to the right to be visible. However,
these longer running applications (seconds to tens of sec-
onds, rather than tens to hundreds of milliseconds) change
the relative performance of EC2-East and the cloudlet. As
mentioned in Section 2.2, latency from our testbed to EC2-
East is unusually good and not much higher than WiFi la-
tency. As a result, the greater computational power of the
cloud instances over the cloudlet now becomes significant,
so EC2-East is the fastest.

The results also show the impact of application charac-
teristics. CPU Benchmark transfers very little data, so
the various EC2 curves look very similar, mainly shifted
by the difference in RTT to the different sites. Linpack
transfers significantly more data, and the differences in re-
sponse times between EC2 sites are much more apparent. PI
Benchmark transfers a similar amount of data in total, but
in multiple transfers, as the processing thread is transferred

(a) Linpack

(b) CPU Benchmark

(c) PI Benchmark

Figure 8: Execution times for COMET apps (WiFi)

back and forth between the mobile device and backend. As
a result, for PI Benchmark, the network effects of distant
clouds are magnified. We delve further into the effects of
multiple migrations in Section 3.3.

3.2 WiFi Offloading and Energy
In addition to improving performance, offloading compu-

tation can reduce the energy consumption on mobile devices.
We rerun our WiFi offload scenarios while measuring the
power consumption of the mobile devices. For the netbook,
we remove the battery and use a WattsUp power meter [27]
to log the total power draw at the AC power cord. On the
smartphone, we interpose a Monsoon Power Monitor [18]
meter at the battery contacts, logging voltage and current
draw during execution of our benchmarks.

The average energy consumed per request or per run are
shown in Figure 9, along with standard deviations in paren-
theses. Offload to any site greatly reduces power (and there-
fore energy consumed) on the mobile devices, since they
no longer perform heavy computations. The choice of off-
load site does not affect power, which is about the same for



Offload None Cloudlet East West Europe Asia

Face† (J/query)
12.4 2.6 4.4 6.1 9.2 9.2
(0.5) (0.3) (0.0) (0.2) (4.1) (0.2)

Fluid† (J/frame)
0.8 0.3 0.3 0.9 1.0 2.2

(0.0) (0.0) (0.0) (0.0) (0.0) (0.1)

MAR† (J/query)
5.4 0.6 3.0 4.3 5.1 7.9

(0.1) (0.1) (0.8) (0.1) (0.1) (0.1)

Linpack (J/run)
40.3 13.0 13.3 16.9 18.2 38.1
(2.6) (0.7) (2.3) (1.8) (1.9) (4.1)

CPU (J/run)
9.6 5.7 5.9 5.8 5.9 6.0

(1.4) (0.3) (0.3) (0.3) (0.2) (0.2)

PI (J/run)
129.7 53.9 57.6 107.6 162.8 203.4
(2.9) (2.1) (1.8) (8.6) (18.0) (16.7)

Numbers in parentheses are standard deviations from
three runs. †The display is turned off during energy
measurement.

Figure 9: Energy consumption on mobile devices

cloudlet and cloud cases. However, execution duration does
vary, so the actual energy consumed per query/frame/run is
greatly affected by offload site. In all cases, cloudlet offload
results in the least energy consumed per execution, while
further offload sites incur increasing energy costs. In fact, in
many cases, offloading to EC2-Asia or EC2-Europe results
in higher energy costs than not offloading would.

3.3 Effects of Interactivity
Although COMET is effective at offloading the CPU-

intensive portions of unmodified Android applications, any
interaction with device hardware (e.g., sensor I/O, screen up-
date, or file operation), will require application threads to
migrate back to the mobile device. This can cause many
thread migrations over the course of the program execution,
magnifying the effects of network latency and bandwidth.

To study this effect of interactivity further, we create a
custom CPU-intensive application that factors large integers.
For purposes of offloading, COMET treats file I/O as interac-
tion, similar to display updates. When an application thread
attempts any interaction, COMET migrates it back to the mo-
bile device before allowing the operation to proceed. Our
app saves intermediate results to a file after a configurable
number of iterations, allowing us to vary how often migra-
tions are triggered with COMET. Figure 10 shows how the
app performance changes as the interactivity level (number
of file operations) increases. The execution time without off-
loading remains nearly constant because the application is
CPU bound on the mobile device, even with a few hundred
file operations. However, cloud offloading performance is
highly affected, and becomes slower than just running on
the mobile device once we exceed 75 I/O operations dur-
ing the execution. In contrast, offloading to a cloudlet is
much less sensitive to the interactivity level. Until 240 file
writes, it performs better than the no-offloading case. These
results show that cloudlets can greatly benefit frameworks
like COMET by muting the effects of application interactiv-
ity. Independent of our work, Tango [10] corroborates that
interactivity of an application critically affects code offload-
ing. This work uses deterministic replay to improve offload-
ing performance. In contrast, we advocate using cloudlets to
completely avoid long response times.

Figure 10: Effect of Interactivity on COMET (WiFi)

Dotted lines are with periodic pings (1 ms intervals).

Figure 11: Effect of link power management on echo
server response times with smartphone

3.4 Effects of Radio Link Management
Our initial experiments with a smartphone on LTE showed

that network latencies tend to jump between discrete values.
Figure 11 shows the CDF of the observed response times
over LTE and WiFi from a simple echo server that gradually
increases the delay before sending a reply. We would expect
a straight line, indicating uniform distribution of response
times, but the results show a distinct stair-step pattern. As
steps are visible in both LTE and WiFi, we believe this stair-
step pattern is due to aggressive power down of the radio by
the mobile device. This effect is not due to CPU scheduling,
and is not present in WiFi results from non-phone devices
tested. For LTE, we observe two different steps sizes, which
start to occur at different times. The latter is likely due to
greater aggressiveness of the commercial LTE network con-
figuration in reclaiming idle resources. We believe the dif-
ferent step size is due to the use of discontinuous reception
mode (DRX) in LTE [2]. This mechanism uses short and
long sleep cycles to let the mobile device power down radio
circuitry. The use of DRX and sleep durations are deter-
mined by the LTE network.

Our experiments also show that if the mobile device per-
forms frequent data transmissions (e.g., periodic background



(a) FACE (300 images per run)

(b) MAR (100 images per run)

(c) FLUID (10 min runs)

Figure 12: Response times for prepartitioned apps (LTE)

pings), these effects completely disappear. To avoid the con-
founding effects of latency discretization, all of our LTE ex-
periments are run with background pings at 1 ms intervals.

3.5 LTE Offloading Performance
Figure 12 shows the response times for the three prepar-

titioned applications when using LTE. Overall, these results
are quite similar to those from the WiFi experiments. As the
LTE latencies are slightly higher, the curves are shifted to the
right compared to the WiFi results. Additionally, the com-
mercial LTE network does not have as good connectivity to
the EC2-East data center as our WiFi setup does. So, al-
though the EC2-East response times are still the best among
the cloud scenarios, they are not quite as low as in our WiFi
experiments. In all cases, offloading to the cloudlet provides
the best response times.

3.6 LTE Energy Tradeoff
In the previous LTE experiments, we use background

pinging at 1 ms intervals to overcome discretized latency ef-

The error bars show standard deviation across three
runs. Each run uses 250 images.

Figure 13: Response time and power consumption for
Tesseract-OCR (LTE)

fects from Section 3.4 and minimize response times. How-
ever, this approach can negatively impact mobile energy
consumption. Here, we quantify this tradeoff between re-
sponse time and energy consumption by varying the ping
intervals.

Since we need a tethering setup to run the selected ap-
plications in our in-lab LTE network, energy measurement
becomes difficult. We therefore use a different application
(Tesseract-OCR [9]) that can run directly on the Google
Nexus 6. We measure energy consumption using the battery
voltage and current reported by the OS1, since the Nexus 6
smartphones do not have removable batteries.

Figure 13 shows the response time and power dissipa-
tion of Tesseract-OCR, comparing local execution (leftmost
bars) with offloading to cloudlet (top plot) and offloading to
cloud (Amazon EC2-West, bottom plot). Offloading, even
without background pings, clearly reduces power dissipa-
tion on the mobile device. When offloading to the cloud,
this comes with a response time penalty. In contrast, on
the cloudlet, both the latency and the energy consumption
are reduced. Adding background pinging at increasing fre-
quencies can improve response time at the expense of in-
creased power. When offloading to the cloud, pinging every
1 ms (rightmost two bars) reduces the response time by 17%
but increases the power by 29% compared to the no pinging
case (second pair of bars). Since our in-lab LTE network
does not instruct the mobile device to save power as aggres-
sively as the commercial network does, the effect of adding

1In /sys/class/power_supply/battery/current_now
and /sys/class/power_supply/battery/voltage_now



background pinging is not as significant when offloading to
the cloudlet, though the overall trend is still visible. When
consistent low response times are paramount, adding back-
ground pinging can be a valuable tool to reduce the latency
effects of link management in LTE.

4. Related Work
This work quantifies the relative merits of cloudlet off-

load versus cloud offload. It takes an application-centric
view, recognizing that a mobile user craves crisp interac-
tion and long battery life. Achieving these attributes on
small, lightweight mobile hardware for compute-intensive
and memory-intensive applications such as speech recogni-
tion and face recognition is only possible through offload-
ing. This work spans diverse applications, considers static
and dynamic partitioning strategies, examines both WiFi and
4G LTE wireless networks, explores the role of application
interactivity, and uncovers some idiosyncrasies of 4G LTE
networks.

To the best of our knowledge, no other work provides
such an extensive and detailed investigation of cloud offload
versus cloudlet offload. Closest in spirit to this work are
the measurements reported in 2013 by Ha et al. [13]. That
work only examined prepartitioned applications and WiFi
networks; it did not consider dynamically partitioned appli-
cations or 4G LTE networks.

Of broader relevance is the long history of work on cy-
ber foraging. The foundational work of Noble et al. [19]
and Flinn et al. [8] have already been mentioned in Sec-
tion 1. Detailed accounts of the evolution of cyber foraging
are provided in the survey by Flinn [7] and the retrospective
by Satyanarayanan [21].

Related to our study of offloading over 4G LTE networks
is the extensive 2012 study of wide-area wireless networks
by Huang et al. [14]. That work examines a wide range of
networking technologies, but only considers today’s web ap-
plications. In contrast, our work considers applications that
are representative of future workloads for edge computing.
A direct point of comparison is the observed RTT over com-
mercial 4G LTE networks. Huang et al. report mean values
around 70 milliseconds, which is consistent with our mea-
surements considering the difference in experimental setup.
These values are in contrast to the roughly 15 millisecond
RTT observed on our experimental 4G LTE network, sug-
gesting that much of the latency is incurred in the evolved
packet core (EPC) of a commercial 4G LTE network rather
than in its RF segment.

5. Conclusion
Our study has shown that the choice of offloading site is

important for both prepartitioned applications and for dy-
namic offloading frameworks such as COMET. In compar-
ison to the average cloud (EC2-west), we show that edge
computing can improve response time and energy consump-
tion significantly for mobile devices. These advantages are
not limited to WiFi networks. Even when offloading over
LTE, edge computing continues to provide superior results.

Our results also show that offloading computation blindly
to the cloud can be a losing strategy. Offloading to a distant
cloud can result in even lower performance and higher en-
ergy costs than running locally on the mobile device. For
highly interactive applications, even offloading to nearby
clouds can be detrimental to performance. Such applications
demonstrate most clearly that edge computing is necessary
to achieve performance and energy improvement through
offloading.

There is increasing commercial interest in deeply immer-
sive applications such as mobile augmented reality and cog-
nitive assistance. For such interactive and compute-intensive
applications, our results show that the industrial efforts to-
wards building edge computing infrastructure are not mis-
placed. Rather such infrastructures will be key enablers of
this new genre of applications.

6. Acknowledgements
This work has been supported by the National Science

Foundation (NSF) under grant number CNS-1518865. Ad-
ditional support was provided by Intel, Vodafone, Google,
Crown Castle, and the Conklin Kistler family fund. Any opin-
ions, findings, conclusions or recommendations expressed in
this material are those of the authors and should not be at-
tributed to Carnegie Mellon University or the funding sources.

7. REFERENCES
[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog Computing and

Its Role in the Internet of Things. In Proceedings of the First Edition
of the MCC Workshop on Mobile Cloud Computing, Helsinki,
Finland, 2012.

[2] C. S. Bontu and E. Illidge. DRX mechanism for power saving in
LTE. IEEE Communications Magazine, 47(6):48–55, 2009.

[3] G. Bradski et al. The opencv library. Doctor Dobbs Journal,
25(11):120–126, 2000.

[4] G. Brown. Converging Telecom & IT in the LTE RAN. White Paper,
Heavy Reading, February 2013.

[5] Z. Chen, L. Jiang, W. Hu, K. Ha, B. Amos, P. Pillai, A. Hauptmann,
and M. Satyanarayanan. Early implementation experience with
wearable cognitive assistance applications. In Proceedings of the
2015 workshop on Wearable Systems and Applications, pages 33–38.
ACM, 2015.

[6] P. Cokulov. Linpack - Android Apps on Google Play.
https://play.google.com/store/apps/details?id=rs.pedjaapps.Linpack,
2015.

[7] J. Flinn. Cyber Foraging: Bridging Mobile and Cloud Computing via
Opportunistic Offload. Morgan & Claypool Publishers, 2012.

[8] J. Flinn and M. Satyanarayanan. Energy-aware Adaptation for
Mobile Applications. In Proceedings of the 17th ACM Symposium on
Operating Systems and Principles, Kiawah Island, SC, December
1999.

[9] Google. Tesseract Open Source OCR Engine.
https://github.com/tesseract-ocr.

[10] M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn, S. Mahlke, and
Z. M. Mao. Accelerating mobile applications through flip-flop
replication. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services, pages
137–150. ACM, 2015.

[11] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen.
COMET: Code Offload by Migrating Execution Transparently. In
Proceedings of the 10th USENIX Symposium on Operating System
Design and Implementation, Hollywood, CA, October 2012.

[12] K. Greene. AOL Flips on ‘Game Changer’ Micro Data Center.
http://blog.aol.com/2012/07/11/
aol-flips-on-game-changer-micro-data-center/, July 2012.



[13] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies, and
M. Satyanarayanan. The Impact of Mobile Multimedia Applications
on Data Center Consolidation. In Proceedings of the IEEE
International Conference on Cloud Engineering, San Francisco, CA,
March 2013.

[14] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck.
A Close Examination of Performance and Power Characteristics of
4G LTE Networks. In Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services, Lake
District, UK, 2012.

[15] Intel. Intel Integrated Performance Primitives.
https://software.intel.com/en-us/intel-ipp.

[16] A. Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp: comparing
public cloud providers. In Proceedings of the 10th annual conference
on Internet measurement, pages 1–14. ACM, 2010.

[17] S. D. Markovic. PI Benchmark - Android Apps on Google Play.
https://play.google.com/store/apps/details?id=rs.in.luka.android.pi,
2015.

[18] Monsoon Solutions. Power Monitor.
http://www.msoon.com/LabEquipment/PowerMonitor/.

[19] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton, J. Flinn, and
K. Walker. Agile Application-Aware Adaptation for Mobility. In
Proceedings of the 16th ACM Symposium on Operating Systems

Principles, Saint-Malo, France, October 1997.
[20] M. Satyanarayanan. Pervasive Computing: Vision and Challenges.

IEEE Personal Communications, 8(4), 2001.
[21] M. Satyanarayanan. A Brief History of Cloud Offload: A Personal

Journey from Odyssey Through Cyber Foraging to Cloudlets.
GetMobile: Mobile Computing and Communication, 18(4), January
2015.

[22] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The Case for
VM-Based Cloudlets in Mobile Computing. IEEE Pervasive
Computing, 8(4), October-December 2009.

[23] B. Solenthaler and R. Pajarola. Predictive-corrective incompressible
SPH. ACM Trans. Graph., 28(3):40:1–40:6, July 2009.

[24] G. Takacs, M. E. Choubassi, Y. Wu, and I. Kozintsev. 3D mobile
augmented reality in urban scenes. In Proceedings of IEEE
International Conference on Multimedia and Expo, Barcelona,
Spain, July 2011.

[25] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of
Cognitive Neuroscience, 3(1):71–86, 1991.

[26] Unstable Apps. CPU Benchmark - Android Apps on Google Play.
https://play.google.com/store/apps/details?id=com.unstableapps.
cpubenchmark, 2015.

[27] WattsUp. .NET Power Meter. http://wattsupmeters.com/.


